Better Math Teaching Network

Carnegie Foundation Summit on Improvement in Education April 5, 2018 | San Francisco, CA

Kirk Walters & Toni Smith, AIR

Overview

- Why we formed a NIC
- How we prepared to launch
- How we launched
- What our work looks like in action
- What we've been learning
- Short video

Why we formed a NIC

We identified a problem

"Big deal, an A in math. That would be a D in any other country."

No seriously, we have a problem

We then decided to study it

- Inspired by student-centered pedagogy, but not interested in re-igniting the "math wars"
- Finding 1: Student-centered teaching is **nuanced**, with multiple entry points for teachers
- Finding 2: Positive association* between student-centered instruction and students' problem-solving skills (PISA)

An Un-Close Look

at Student-Centered Math Teaching

And we didn't want our report to collect dust

How can we support teachers in improving their instruction by using more student-centered approaches?

And we didn't want "any old" PD program

- Limited evidence on math professional development programs that work
 - Including some of our own studies

 One potentially promising direction is PD that is strongly rooted in teachers' daily work

Networked Improvement Communities

- Professional development grounded in teachers' work
 - Focus on instructional routines as standard work processes
- Foster collaboration and learning across schools and contexts
- Encourages incremental change with reflection
- More deliberate attention to data than teachers typically do when reflecting
- Opportunity to link research and practice

How we prepared to launch

We started small and purposefully

- Hub members participated in Learning Lab (2015-16)
 - 3 researchers and 1 practitioner
 - Alternating periods of planning and action
- Worked with initiation team to plan (spring 2015)
 - 4 math instructional leaders
 - 3 high school math teachers
- Expanded into a pilot network (fall 2015-16)
 - 3 math instructional leaders
 - 10 high school math teachers

The work

What we learned

- Teachers
 - Liked the network focus on student-centered instructional routines to more deeply engage students
 - Needed time to reflect on instruction and identify an aspect to change
 - Benefited from the support of an improvement science coach to plan, design, and collect data for PDSA testing
- Refining the aim and driver diagram are ongoing processes

What we learned (continued)

- The network is best supported by a combination of small- and whole-group meetings
 - Small PDSA testing groups (3-4 teachers) focused on a similar change idea and facilitated by a hub "coach"
 - Periodic whole-group meetings to share and learn from each other
- Instructional leaders should be organized into a separate group focused on spreading the work

Launching the BMTN

Our aim statement

2,019 in 2019:

By 2019, the number of students who *connect, justify*, and *solve* with depth in algebra will increase by 2,019.

Deep student engagement

- Connect. Make connections among mathematical algorithms, concepts, and application to real-world contexts, where appropriate
- Justify. Communicate and justify mathematical thinking as well as critique the reasoning of others
- *Solve*. Make sense of and solve challenging math problems that extend beyond rote application of algorithm

Network members

- Recruitment
 - High school algebra teachers
 - Reflective, interested in student-centered instruction, desire to improve
- Growing over time
 - Year 1 (2016-17) 23 teachers, 5 instructional leaders
 - Year 2 (2017-18) 41 teachers, 10 instructional leaders
 - Year 3 (2018-19) 55 teachers, 15 instructional leaders
- Facilitated by a hub
 - Researchers, practitioner, research assistants

Our work in action

Our basic structure

Virtual meetings every six weeks with small groups of teachers testing similar instructional routines

Five in-person meetings per year, anchored by a weeklong summer institute

What did those routines look like?

- Introducing new material using *open-ended problems* to encourage students to make connections (Connect)
- Providing and, ultimately, removing scaffolds for students to use *claim-evidence-reasoning* in justifications (Justify)
- Integrating more *non-rote problems* when new material is introduced (Solve)

What about the PDSA process?

- Teachers developed measures for three key questions
 - Will I implement the routine **as planned**?
 - Will my students engage?
 - Will my students engage with depth?
- They use different types of data sources
 - Teacher journal, student surveys, student work e.g., exit ticket, observation, audio recordings of students

Examples

3. STUDY			
Questions: Questions you have about what will happen. What do you want to learn? (From Plan – Step 1)	Predictions: Make a prediction for each question. Not optional. (From Plan – Step 1)		What were the results? Comment on your predictions in the rows below. Were the correct? Record any data summaries as well.
Will my students connect with depth?	40% will score a "2" or higher on the connection rubric	→	40% scored a "2" and 10% scored a "3" for a total of 50%scoring a "2" or more

Evidence Depth of Connections Rubric Score PDSA form 0 No reflection attempted Used for each PDSA trial 1/Beginning • Has no connection to the concepts or the meaning underlying the procedure Connect being used. · Cited an incorrect connection. • Explanations focus solely on describing the procedure that was used. 2/Emerging • Explains the use of procedures for the purpose of developing deeper levels of understanding of mathematical concepts and ideas. • Student engages with conceptual ideas that underlie the procedures to develop understanding. 3/Connecting • Student is able to independently explore and understand the nature of mathematical concepts, process, or relationships. • Student make connections among multiple representations to help develop meaning. • Explains that broad general procedures have close connections to underlying conceptual ideas. • Connections are logical and meaningful.

Assessing our progress toward the aim

- Student survey questions that align with our aim (and teachers' instructional improvement efforts)
 - Ask how often students have opportunities to engage in activities to connect, justify, solve
- Administer the survey each Fall and Spring

What we've been learning

Things we learned right away

- Both new and experienced teachers told us and our external evaluator that it helped break down professional isolation
- Teachers liked the focus on instructional routines that they used weekly, sometimes daily

Teaching as an isolated profession is not new (Lortie, 1975)

Value of network learning

As we got going, it also became clear

- Teachers found the **PDSA structure useful** for testing and refining instructional routines, including the narrowed focus on Connect, Justify, and Solve
- Teachers learned it was possible to deepen student engagement by making incremental improvements to their instruction

Challenges

- How to spread change ideas
- How to support growing network
- Measures, measures, measures
 - How to measure *deep* engagement
 - How to make *practical* measures

Connect

Percentage of students reporting making connections between **math and real world** on a daily basis, Fall to Spring

Justify

Percentage of students reporting arguing or defending their approach to solving math problems a daily basis, Fall to Spring $p_{<.05}$

Solve

Percentage of students reporting solving multi-step problems that take 20+ minutes to solve on a daily basis, Fall to Spring p<.05 Fall 2016

Spring 2017 48%

Our work is beginning to spread

- Refined **instructional routines** are being shared inside and outside the network
- BMTN leaders and teachers are **presenting their work** at regional and national conferences (>10 delivered, more planned)
- Publications are in the works

www.bettermathteachingnetwork.org

- Kirk Walters (kwalters@air.org)
- Toni Smith (tsmith@air.org)

