Carnegie Foundation Summit on Improvement in Education A April 5, 2018 | San Francisco, CA
 Kirk Walters \& Toni Smith, AIR

Overview

-Why we formed a NIC

- How we prepared to launch
- How we launched
- What our work looks like in action
-What we've been learning
- Short video

Why we formed a NIC

We identified a problem

"Big deal, an A in math. That would be a D in any other country."

No seriously, we have a problem

We're below the middle of the international pack on the PISA (2015), a test that matters

We then decided to study it

- Inspired by student-centered pedagogy, but not interested in re-igniting the "math wars"
- Finding 1: Student-centered teaching is nuanced, with multiple entry points for teachers

- Finding 2: Positive association* between student-centered instruction and students' problem-solving skills (PISA)

And we didn't want our report to collect dust

How can we support teachers in improving their instruction by using more student-centered approaches?

And we didn't want "any old" PD program

- Limited evidence on math professional development programs that work
- Including some of our own studies

- One potentially promising direction is PD that is strongly rooted in teachers' daily work

Networked Improvement Communities

- Professional development grounded in teachers' work
- Focus on instructional routines as standard work processes
- Foster collaboration and learning across schools and contexts
- Encourages incremental change with reflection
- More deliberate attention to data than teachers typically do when reflecting
- Opportunity to link research and practice

How we prepared to launch

We started small and purposefully

- Hub members participated in Learning Lab (2015-16)
- 3 researchers and 1 practitioner
- Alternating periods of planning and action
- Worked with initiation team to plan (spring 2015)
- 4 math instructional leaders
- 3 high school math teachers
- Expanded into a pilot network (fall 2015-16)
- 3 math instructional leaders
- 10 high school math teachers

The work

What we learned

- Teachers
- Liked the network focus on student-centered instructional routines to more deeply engage students
- Needed time to reflect on instruction and identify an aspect to change
- Benefited from the support of an improvement science coach to plan, design, and collect data for PDSA testing
- Refining the aim and driver diagram are ongoing processes

What we learned (continued)

- The network is best supported by a combination of small- and whole-group meetings
- Small PDSA testing groups (3-4 teachers) focused on a similar change idea and facilitated by a hub "coach"
- Periodic whole-group meetings to share and learn from each other
- Instructional leaders should be organized into a separate group focused on spreading the work

Launching the BMTN

Our aim statement

2,019 in 2019:

By 2019, the number of students who connect, justify, and solve with depth in algebra will increase by 2,019 .

Deep student engagement

- Connect. Make connections among mathematical algorithms, concepts, and application to real-world contexts, where appropriate
- Justify. Communicate and justify mathematical thinking as well as critique the reasoning of others
- Solve. Make sense of and solve challenging math problems that extend beyond rote application of algorithm

AIM Statement

Deep Student Engagement in

 Algebra2,019 in 2019:
By 2019, the number of students who connect, justify and solve with depth in algebra will increase by 2,019 .

Connect. Make connections among mathematical algorithms, concepts, and application to real-world contexts, where appropriate.

Justify. Communicate and justify mathematical thinking as well as critique the reasoning of others.

Solve. Make sense of and solve challenging math problems that extend beyond rote application of algorithm.

Primary Drivers
(WHAT?)

Mathematics Instruction
Mathematical instruction provides ongoing opportunities for all students to connect, justify, and solve in algebra through the choice of task/activity and
by shifting the academic
responsibility to the students.
(Instruction is student-centered.)

Secondary Drivers
 (WHERE?)

Instructional Routines to Introduce New Material

Instructional Routines to

 Practice/Reinforce Previously Introduced MaterialChange Ideas (HOW?)

Student Attitudes
Students see school and learning as
Student Attitudes
Students see school and learning as important and valuable
\square

> Classroom Environment Positive, caring learning environment for all students

BETTER MATH TEACHING
Network

Network members

- Recruitment
- High school algebra teachers
- Reflective, interested in student-centered instruction, desire to improve
- Growing over time
- Year 1 (2016-17) - 23 teachers, 5 instructional leaders
- Year 2 (2017-18) - 41 teachers, 10 instructional leaders
- Year 3 (2018-19) - 55 teachers, 15 instructional leaders
- Facilitated by a hub
- Researchers, practitioner, research assistants

Our work in action

Our basic structure

Virtual meetings every six weeks with small groups of teachers testing similar instructional routines

What did those routines look like?

- Introducing new material using open-ended problems to encourage students to make connections (Connect)
- Providing and, ultimately, removing scaffolds for students to use claim-evidence-reasoning in justifications (Justify)
- Integrating more non-rote problems when new material is introduced (Solve)

What about the PDSA process?

- Teachers developed measures for three key questions
- Will I implement the routine as planned?
- Will my students engage?
-Will my students engage with depth?
- They use different types of data sources
- Teacher journal, student surveys, student work - e.g., exit ticket, observation, audio recordings of students

Examples

[^0]
Assessing our progress toward the aim

- Student survey questions that align with our aim (and teachers' instructional improvement efforts)
- Ask how often students have opportunities to engage in activities to connect, justify, solve
- Administer the survey each Fall and Spring

What we've been learning

Things we learned right away

- Both new and experienced teachers told us and our external evaluator that it helped break down professional isolation
- Teachers liked the focus on instructional routines that they used weekly, sometimes daily

Teaching as an isolated profession is not new (Lortie, 1975)

Value of network learning

Opportunities to collaborate with educators from other schools and districts

98\%
Extremely Beneficial

93\%
Extremely Beneficial

90\%
Extremely Beneficial

91\%
Strongly Agree

As we got going, it also became clear

- Teachers found the PDSA structure useful for testing and refining instructional routines, including the narrowed focus on Connect, Justify, and Solve
- Teachers learned it was possible to deepen student engagement by making incremental improvements to their instruction

Challenges

- How to spread change ideas
- How to support growing network
- Measures, measures, measures
- How to measure deep engagement
- How to make practical measures

Connect

Percentage of students reporting making connections between math and real world on a daily basis, Fall to Spring
p<. 05

```
Fall 2016
30\%
```


Justify

Percentage of students reporting arguing or defending their approach to solving math problems a daily basis, Fall to Spring

35\%

Solve

Percentage of students reporting solving multi-step problems that take $20+$ minutes to solve on a daily basis, Fall to Spring

$$
p<.05
$$

Fall 2016
16\%

$$
\text { Spring } 2017
$$

48\%

Our work is beginning to spread

- Refined instructional routines are being shared inside and outside the network
- BMTN leaders and teachers are presenting their work at regional and national conferences (>10 delivered, more planned)
- Publications are in the works

Thanks!

www.bettermathteachingnetwork.org

- Kirk Walters (kwalters@air.org)
- Toni Smith (tsmith@air.org)

[^0]: BETTER MATH
 TEACHING

